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The principal epidemiologic evidence that environmental tobacco smoke (ETS) increases the risk of
lung cancer in (lifelong) nonsmokers is from studies of nonsmoking women married to smokers.
This article estimates exposure-response curves for 14 studies (1,249+ cases, 7 countries) with
data on lung cancer categorized by the number of cigarettes/day smoked by the husband. The
pooled results from the five U.S. studies alone are extrapolated to ETS levels in the workplace using
measures of serum cotinine and nicotine samples from personal monitors as markers of exposure
to ETS. It is predicted that the increase in lung cancer risk for nonsmoking women from average
ETS exposure at work (among those exposed at work) is on the order of 25% (95% confidence
interval (Cl) = 8, 41) relative to background risk (i.e., with no ETS exposure from any source). This
compares to an estimate of 39% (95% Cl = 5, 65) for nonsmoking women whose husbands smoke
at the adult male smoker's average of 25 cigarettes/day. At the 95th percentiles of exposure, the
estimate from spousal smoking is 85% (95% Cl = 32, 156), compared to 91 % (95% Cl = 34, 167)
from workplace ETS exposure. Subject to the validity of the assumptions required in this approach,
the outcome supports the conclusion that there is a significant excess risk from occupational
exposure to ETS. The excess risk from ETS at work is typically lower than that from spousal
smoking, but may be higher at the 95th percentiles of exposure. Key words: dose response,
environmental tobacco smoke, lung cancer, occupational risk. - Environ Health Perspect 1 07(suppl
6):885-890 (1999).
http.//ehpnetl.niehs.nih.gov/docs/1999/suppl-6/885-890brown/abstract.html

There is considerable evidence that exposure
to environmental tobacco smoke (ETS) poses
a risk of lung cancer to nonsmokers (defined
as lifelong nonsmokers) based on the relation-
ship between active smoking and lung cancer,
the presence of known and suspected carcino-
gens in ETS, and evidence from epidemio-
logic studies showing an increased risk of
lung cancer to nonsmoking women married
to smokers (1). Given an association between
spousal smoking and lung cancer incidence in
nonsmokers, it is reasonable to expect an
association between occupational exposure to
ETS and lung cancer in nonsmokers as well.
Unlike studies of exposure to spousal smok-
ing, however, where the number of cigarettes
smoked per day by the husband is a common
surrogate for ETS exposure, it is difficult to
measure occupational exposure and to make
comparisons across studies. Additionally, the
number of studies with direct observations on
occupational exposure is limited and some are
from outside the United States where occupa-
tional exposure to ETS may differ from that
inside the United States. Statistically combin-
ing the outcomes from these studies (meta-
analysis) has produced varied results, with
only one study reporting a significant risk of
lung cancer from occupational exposure to
ETS (2).

For the safety and protection of non-
smokers who may be exposed to ETS in the
workplace, it is imperative to gain a better
understanding of the potential lung cancer
risk associated with occupational exposure

to ETS. Toward that end, the current
analysis brings to bear the results of those
epidemiologic studies on nonsmoking
women married to smokers that contain
exposure-response data (i.e., where pres-
ence/absence of lung cancer in study partici-
pants is categorized by the number of
cigarettes smoked per day by the spouse).
Exposure-response relationships are calcu-
lated for individual studies using regression
analysis and then combined across studies
by methods for meta-regression. The
assumption is made that the expected value
of the natural logarithm of relative risk
[ln(RR)] is proportional to the number of
cigarettes smoked by the husband.

The exposure-response model for the
U.S. studies alone is extrapolated to risk from
occupational exposure to ETS, which requires
a second assumption: Among nonsmoking
women exposed to ETS at home (married or
not), the excess risk attributable to the mean
exposure at home, as determined by measures
of serum cotinine, is equal to the excess risk
from spousal smoking at the average rate of
adult male smokers-about 24 cigarettes/day.
ETS exposure in the workplace, relative to
the home, is then determined from data on
serum cotinine as well and from data on air-
borne nicotine collected by personal moni-
tors. In principle, the current approach
extends that of Hackshaw et al. (3). Their
objective was to estimate the risk of lung
cancer in nonsmoking women married to
smokers by linear extrapolation from the

exposure-response relationship for smokers.
Our objective is to estimate the risk of lung
cancer from ETS in the workplace by extrap-
olation from the exposure-response relation-
ship for nonsmoking women married to
smokers. The value of this method is that it
adds a new approach with different data to
estimation of risk from ETS in the workplace
and contributes to the growing pool of
evidence on this important topic.

Methods
A search of former reviews and electronic
databases located 18 epidemiologic studies
with data relating lung cancer in nonsmok-
ing women to the number of cigarettes
smoked per day by the husbands. No
attempt was made to locate unpublished
manuscripts or data published in confer-
ences/meetings that might minimize poten-
tial publication bias. Two criteria were used
for inclusion of studies: a) the study was not
conducted in a locale where other indoor
pollutants might mask an ETS effect; b) the
description of the study suggests adequate
attention to design, execution, and interpre-
tation of data. Criterion a) eliminated two
studies (4,5), and Criterion b) eliminated
two more (6,7). Studies by Wang et al. (4)
and Liu et al. (5) were conducted in loca-
tions in China where indoor environments
are often polluted by fumes from cooking
oils or by coal smoke. Studies by Inoue and
Hirayama (7) and Geng et al. (6) lack suffi-
cient descriptions for evaluation. The 14
remaining studies included in the analysis are
listed in Table 1. Relative risks from cohort
studies and odds ratios from case-control
studies are both referred to as RRs for
-editorial convenience.
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For each of the 14 studies, an
exposure-response relationship is estimated
where response refers to lung cancer in non-
smoking women married to smokers and
exposure refers to the number of cigarettes
per day smoked by their husbands. A log-
linear fixed-effects model is assumed, as
described by Berlin et al. (8):

E(lnRR) = PX [

where InRR is the natural logarithm of rela-
tive risk, X is the number of cigarettes/day
smoked by the husband, and f is the
unknown slope parameter of the regression.
This model was previously applied by
Hacksaw et al. (3) to affirm the conclusion of
a significant lung cancer risk from spousal
smoking. In the current analysis the com-
bined regression from studies in the United
States alone is considered most suitable for
extrapolation of risk to occupational exposure
in the United States. Exposure-response rela-
tionships, however, are calculated for all
countries for which there are suitable data. A
test of heterogeneity and plots of the country-
wide regressions are used to check that the
result for the United States appears reason-
able compared with those of other countries.

Within a given study, the RRs [and hence
the ln(RR)s] at different exposure levels
within a study are correlated because they use
the same referent group (8). If that correlation
is ignored, the slope of the regression for
ln(RR) will still be unbiased, but its standard
error will be biased downward. This means
that the variance of the slope-the standard
error squared-will tend to be understated
and the inverse of the variance, used to deter-
mine the weight of the slope when pooled
across studies, will tend to be overstated. The
available studies do not include the correla-
tions of RRs, which are usually adjusted for
potential confounders; thus, the correlation of
RRs, or their logarithms, cannot be calculated
directly. A method outlined in Berlin et al. (8)
and described fully by Greenland and
Longnecker (9) adjusts for within-study corre-
lation when the study observations (crude
data) are available. This method was applied
to studies that included crude data. In general,
the effect of the adjustment was small.

The combined slope estimate for each
country was obtained by weighting the esti-
mate for each study inversely proportional to
its variance. As an example, three U.S. studies
could be corrected for within-study correlation
(10-12), but the corrections had little impact
on the combined estimate of the slope (0.0153
and 0.0149) and their standard errors (0.0042
and 0.0038), respectively. When the two
uncorrected U.S. studies (13,14) were added,
the combined slope estimate was reduced
slightly to 0.0120 (standard error 0.0034). For

Table 1. Epidemiologic studies with data on intensity (cigarettes/day) of spousal smoking.

Cigarettes/ Relative Regression Weight
Study Cases Control" day riskb cic slope (%)

China
Du et al. (28)
(case-control)

Country estimate
Greece

Kalandidi et al. ( 15)
(case-control)

Trichopoulos et al. (16)e
(case-control)

Country estimate
Hong Kong

Koo et al. (29)
(case-control)

Lametal. (30)
(case-control)

Country estimate
Japan

Akiba et al. (31)
(case-control)

Hirayama et al. (32(h
(cohort)

Country estimate
Scotland

Hole et al. ( 19)'
(cohort)

Country estimate
Sweden

Pershagen et al. (20)
(case-control)

Country estimate
United States

Cardenas et al. (10)
(cohort)

Garfinkel ( 14)f
(cohort)

Garfinkel et al. (11)
(case-control)

Humble et al. (13)
(case-control)

Kabat et al. ( 12)
(case-control)

Country estimate

28
13
30

26
34
22
8

24
24
14

32
17
25
12
84
22
56
20

21
29
22
12
37
99
64

3
5

53
34
35

46
39
22
9

109
56
25

67
15
35
19

183
22
66
21

82
90
54
23

21,895
44,184
25,461

491
752
536

34
26
7

30
9

22
13
65
39
49
44
29
17
26

26
17
12

46,119
11,458
24,713
9,858

157
90
56
44

71
50
28

0 1.00
1-19 0.72
20+ 1.62

0
1-20
21-40
41+
0
1-20
21+

0
1-10
11-20
21+
0
1-10
11-20
21+

0
1-19
20-29
30+
0
1-19
20+

1.00
1.54
1.77
1.57
1.00
1.95
2.55

1.00
2.33
1.74
1.19
1.00
2.18
1.85
2.07

10
1.3
1.5
2.1
1.0
1.41
1.93

0 1.00
1 -14 1.62
15+ 4.55

0 1.0
1-15 1.0
16+ 3.2

0
1-19
20-39
40+
0
1-19
20+
0
1-9
10-19
20+
0
1-20
21+
0
1-10
11+

1.0
1.1
1.2
1.9
1.00
1.27
1.10
1.00
1.15
1.08
2.11
1.0
1.8
1.2
1.00
0.82
1.06

(0.32, 1.64)d
(0.83, 3.15)

(0.88, 2.70)
(0.93, 3.35)
(0.64, 3.85)

(1.13, 3.36)
(1.31, 4.93)

(0.9,59)
(0.8, 3.8)
(0.5,30)

(1.14, 4.15)
(1.19, 2.87)
(1.07, 4.03)

(0.7, 2.3)9
(0.8, 2.8)9
(0.7, 2.5)9

(1.03, 1.94)
(1.35, 2.74)

(0.17,15.68)
(0.53, 39.00)

(0.6, 1.8)
(1.0, 9.5)

(0.5, 2.2)
(0.7, 2.2)
(1.0, 3.6)

(0.85, 1.89)
(0.77, 1.61)

(1.1, 1.8)
(1.4, 2.7)
(1.9, 4.1)

(0.6, 5.6)(
(0.3, 5.2)9

(0.42, 1.61)
(0.49, 2.30)

0.0180 100.0

0.0180 3.9

0.0111 68.2

0.0319 31.8

0.0178 12.2

0.0072 31.5

0.0282 68.5

0.0216

0.0173

7.5

33.7

0.01897 66.3

0.0184 25.8

0.0609 100.0

0.0609 0.3

0.0325 100.0

0.0325 1.3

0.01135 31.0

0.0050 32.1

0.0213 29.9

0.0142 2.3

0.0035 4.7

0.0120 49.1

Combined estimate (across countries): slope = 0.0157, standard error = 0.0022
&Number of controls in case-control studies; number without lung cancer in cohort studies. bOdds ratio for case-control studies.
Relative risk for cohort studies. c95% confidence interval unless indicated otherwise. dEstimated from raw data by Wolf's method
eData from Trichopoulos et al. ( 16) with relative risks corrected [communication from Trichopoulos (3311. fValues under "Relative risk"
are mortality ratios of observed to expected lung cancer deaths. Values under "Cases" are numbers of observed lung cancer deaths.
990% confidence interval. hStandardized for age of subject [from Hirayama 132)1. Values under "Cases" are numbers of lung cancer
deaths, values under "Controls" are total population. 'Data submitted by author (Hole).
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each country with more than one study,
heterogeneity of slopes between studies was
tested. The combined estimate served as the
comparison from which squared differences
were calculated for a chi-squared test, as shown
in Greenland and Longnecker (9).

The weights used for combining study
results within countries and the weights used
to combine those results across countries are
expressed as percentages in Table 1. For exam-
ple, for Greece, the study by Kalandidi et al.
(15) was weighted more heavily than the study
by Trichopoulos et al. (16)- 68.2% com-
pared to 31.8%-to obtain the country esti-
mate for Greece. The resultant country
estimate for Greece was weighted 12.2% when
estimates were combined across countries to
obtain the slope estimate of 0.0157 (standard
error 0.0022) shown at the bottom of the
table. The same chi-squared test applied to test
for heterogeneity between studies within the
same country was applied to test for hetero-
geneity between countries, using the combined
estimate for all countries as the comparison.

An additional check on the prediction
model for the United States, i.e., the meta-
regression from studies within the United
States, is conducted as follows. The excess risk
is predicted at the average adult male smoking
rate of 24 cigarettes/day. That value is then
compared with meta-analytic results from
other sources based on dichotomous data (i.e.,
where presence/absence of lung cancer in study
participants is simply categorized by whether
or not the husband smokes, not by how much
he smokes). The U.S. model is used also to
predict the RR from spousal smoking at the
95th percentile of adult male smoking rate. A
downward adjustment of model-predicted RRs
is made for bias from smoker misdassification,
using the method of Wald and colleagues
(17). The parameter values used with that
method are marriage aggregation factor, 3.5;
proportion of misclassified smokers, 7%; true
relative risk of misclassified smokers, 4. An
upward adjustment in RR is then calculated
for ETS exposure of the referent group, using
the method described in Appendix A.

The extrapolation of risk from non-
smoking women married to smokers to non-
smoking women occupationally exposed is
based on the prediction model for the United
States and the NHANES III data (18) on
serum cotinine levels (used as a biomarker of
ETS exposure). From this relationship
between the number of cigarettes/day smoked
by the husband and levels of cotinine, the pre-
diction model can be applied to estimate risk
from cotinine levels alone. Data on serum
cotinine and on airborne nicotine collected by
personal monitors are used in this way to
estimate risk from ETS in the workplace.

The referent group at this point is non-
smoking women not married to smokers.

(Some studies included unmarried non-
smoking women as controls.) Unlike spousal
smoking, in which there is a concordance
between the smoking status of husband and
wife, no adjustment appears to be needed for
smoker misclassification in assessing risk from
ETS at work. The same adjustment is made
for ETS exposure of the referent group, how-
ever, because the referent group is the same as
for spousal smoking. Based on personal moni-
toring of nicotine, the 95th percentile for nico-
tine exposure at work exceeds the 95th
percentile from exposure at home. The same
model-based procedure described above,
including adjustments for misclassification and
ETS exposure of the referent group as applica-
ble, is applied to compare excess risks at the
95th percentiles of exposure attributable to
spousal smoking and to occupational exposure.

Results
Figure 1 shows the meta-regression for each
country and for all countries combined. There
is no evidence of within-country or between-
country heterogeneity. The equal or higher
slopes for Greece, Hong Kong, Japan, and
China, relative to that for the United States,
are consistent with the outcome of higher
countrywide estimates from dichotomous data
in the U.S. Environmental Protection Agency
(U.S. EPA) report [(1) studies through Tier 3
in Table 5-17]. The model for all countries
combined predicts an excess risk of 17%
(95% confidence interval [CI] = 12, 22) per
10 cigarettes/day. This estimate is somewhat
lower than the 23% found in Hackshaw et al.
(3) but within their 95% CI (14, 32). The
difference in outcomes probably results from
the slightly different composition of studies
that was used. Hackshaw and colleagues used
four studies not included here (4-7), whereas
two studies are used here that Hackshaw did
not include (19,20). For the United States
alone, the predicted excess risk per 10 ciga-
rettes/day is 13% (95% CI = 5, 21). (It may
be noted that risks have not been adjusted
for smoker misclassification or for exposure of
the referent group at this point.) The expo-
sure-response relationship for the United
States in Figure 1 appears plausible, if not
conservatively low, compared to the results
from other countries. There may be ethnic or
cultural differences between the United States
and some other countries that create real dif-
ferences in exposure to ETS at home or at
work, or in susceptibility to lung cancer.
Thus, the model for the United States alone
with slope 0.012 is used for extrapolation of
risk from the home to the workplace.

It may be useful to examine the five
studies for the United States a bit further for
their relative influence (as indicated under the
"weight (percent)" column in Table 1) and for
some of their specific characteristics. The two

cohort studies (10,14) and one of the three
remaining case-control studies (11) account
for 93% of the total weight; the two remain-
ing case-control studies (12,13) account for
only 4.7and 2.3%, respectively. None of the
studies includes former smokers except for
Humble et al. (13), which adjusts for them in
the statistical analysis. Controls are reasonably
comparable to cases in the case-control
studies. In Garfinkel et al. (11), controls were
from the same hospitals as cases and matched
on age; in Kabat et al. (12), controls were
matched to cases on age, sex, race, hospital,
and year of interview; in Humble et al. (13),
controls were randomly selected from tele-
phone sampling and from Medicare partici-
pants and frequency-matched to cases (1.2
controls per case) by sex, ethnicity, and 10-
year age category. All five studies attempted to
restrict cases to primary lung cancer. All cases
were diagnosed or confirmed by histology in
two studies (11,12) and to varying degrees in
the remaining three studies.

The exposure-response model from the
combined U.S. studies,

InRR= 0.012X [2]

where Xis cigarettes/day smoked by the hus-
band, allows prediction ofRR across the range
ofX The model in Equation 2 is first tested
by predicting risk with Xequal to the average
number of cigarettes/day smoked by adult
U.S. male smokers. In the two large Cancer
Prevention Surveys (CPS-I and CPS-II)
(21,22) conducted by the American Cancer
Society, the average number of cigarettes
smoked per day by male smokers was 22.4
and 25.4, respectively, which reflect smoking
habits in the 1960s and 1980s (23). For 24
cigarettes/day, an approximate average, the
predicted RR from Equation 2 is 1.33 (excess
risk 33% [95% CI = 4, 56]). That value is
reduced to 1.25 (excess risk 25% [95% CI =
3, 42]) to adjust for bias from some ever

1.0 -

0.8 -

E

China (0) Japan (.1
Greece (a) U.S. (v)
Hong Kong (A) Combined

e% .-.E y.^ i :v-::: S . E:g:. :uU:>i
A.. .. . .... ....

A

Figure 1. Natural logarithm of the relative risk of lung
cancer for nonsmoking women married to smokers, as a
function of the number of cigarettes smoked per day by
their husbands.

Environmental Health Perspectives * Vol 107, Supplement 6 * December 1999 887



K.G. BROWN

smokers (former or current smokers) being
incorrectly classified as nonsmokers.

The estimated RR of 1.25 may be
compared with the values 1.19 (for meta-
analysis of all U.S. studies with dichotomous
data) and 1.28 (from the top-ranked study
alone) published by the U.S. EPA (1). An
extension of the U.S. EPA analysis that
includes some subsequent studies (24) found
an RR of 1.09 for all studies combined, and
1.30 for the two top-ranked studies com-
bined. Both of those analyses included several
studies not included in this article, as they did
not contain exposure-response data; two of
the five studies included here (10,12) were
not published at the time of those analyses.
The value 1.25 from the current method is
well within the range of estimates from meta-
analysis of data simply dichotomized on
whether a woman's husband smokes.

The model may now be used to predict
the upper and lower percentiles of excess
lung cancer risk for a nonsmoking woman
married to a smoker. As noted above, the
model-predicted excess risk at the mean
number of cigarettes/day smoked by males,
after adjustment for smoker misclassification,
is 25%. For male smokers between 30 and
70 years of age, the 95th percentile of the
number of cigarettes smoked per day is 40
for CPS-I. The corresponding value for
CPS-II differs slightly by age, with the 95th
percentile at 40-50 cigarettes/day. A value of
45 cigarettes/day is used here as an approxi-
mate 95th percentile. Applying Equation 2
at that value, the estimated excess lung
cancer risk at the 95th percentile exposure
for a nonsmoking woman married to a
smoker is 72% (95% CI = 27, 132). After
adjusting for smoker misclassification, the
excess risk is 67% (95% CI = 25, 123).

From the serum cotinine data of the
NHANES III survey, as described and ana-
lyzed by Pirkle et al. (25), the mean difference
in cotinine levels of persons exposed at home
and those not exposed at home is 0.5576
ng/mL; among those who work, the mean dif-
ference between those exposed at work and
those not exposed at work is 0.2343 ng/mL
(see Appendix A). For serum cotinine as a bio-
marker of exposure to ETS, these figures sug-
gest that for those exposed at work, the level
of exposure at work is approximately 42%
(0.2343/0.5576 = 0.42) of the level of
exposure at home for those exposed at home.

Again, among nonsmoking women
exposed to ETS at home (married or not), it is
assumed that the excess risk attributable to the
mean exposure at home, as determined by
measures of serum cotinine, is equivalent to
the excess risk from spousal smoking at the
average rate of adult male smokers. The aver-
age rate of adult smokers is about 24 ciga-
rettes/day, so for those women exposed to ETS

at work, the average exposure from the work-
place is roughly equivalent to the exposure
from the home where the husband smokes
about 0.42 x 24 = 10 cigarettes/day. From the
exposure-response model in Equation 2, the
estimated RR at 10 cigarettes/day is 1.13
(excess risk 13% [95% CI = 4, 21]). (It may be
noted that the referent group is nonsmoking
women married to nonsmokers).

There is a paucity of data on whether
estimates of risk from ETS at work are biased
from smoker misclassification and if so, what
downward adjustment may be needed for
correction. A bias would result if working
misclassified smokers (typically former smok-
ers or light current smokers who report them-
selves as lifelong nonsmokers) are more apt to
be occupationally exposed to ETS than work-
ing women correctly reporting themselves as
lifelong nonsmokers. In the absence of evi-
dence to the contrary, there is assumed to be
no bias from smoker misclassification for
occupational exposure.

Occupational exposure to ETS varies
considerably across workplace environments.
Using personal monitors, Jenkins et al. (26)
found that for most subjects, total exposure
to nicotine or respirable suspended particles
is higher in the home than in the workplace,
for unrestricted smoking in either place. The
95th percentile for nicotine exposure at
work, however, exceeds the 95th percentile
for home exposure. Continuing to assume
that home ETS exposure levels are propor-
tional to cigarettes/day smoked by the
spouse, the nicotine measurements in Jenkins
et al. (26) are now used as a marker of ETS
exposure because of lack of data on serum
cotinine. The RR for the 95th percentile of
exposure at work exceeds 1.72 (excess risk
72% [95% CI = 27, 132]), which is the pre-
diction for spousal smoking at the 95th per-
centile of the number of cigarettes/day
smoked by adult males prior to adjustment
for smoker misclassification.

Individual studies of nonsmoking women
married to smokers have typically adjusted
their estimates of RR for some mix of con-
founders and risk modifiers but not for ETS
exposure of the referent group (which arises
because the referent group-nonsmoking
women married to nonsmokers-is still
exposed to some ETS from various sources).
Discussion related to exposure of the referent
group may be found elsewhere (1,3,27); the
method used here is described in Appendix A.
Based on comparison of urinary cotinine lev-
els of nonsmoking women whose husbands
smoke and those whose husbands do not
smoke, an increase of about 11% is made to
adjust for ETS exposure of the referent
group, i.e., to make the risk relative to the
risk from background (non-ETS) causes (see
Appendix A).

Adjusting RRs upward by 11%, the pre-
dicted excess risk for a nonsmoking woman
whose husband smokes 24 cigarettes/day is
39% (95% CI = 5, 65). At the 95th per-
centile of exposure, the adjusted excess risk is
85% (95% CI = 32, 156). Adjusting the
excess risk at an average occupational level of
ETS (assumed to be equivalent to exposure of
a woman whose husband smokes 10 ciga-
rettes/day) makes it 25% (95% CI = 8, 41).
At the 95th percentile of occupational expo-
sure, based on the nicotine data in Jenkins
et al. (26), the adjusted excess risk is 91%
(95% CI = 34, 167). The CI values are wide,
contributing to uncertainty in comparisons.
That observation notwithstanding, it appears
that excess risk from ETS in the workplace is
lower (by perhaps one-third) than that from
spousal smoking at typical exposure levels.
However, at the high end of exposure levels
in both environments, the excess risk from
occupational exposure is comparable to or
higher than that from spousal exposure.

Discussion
Occupational exposure to ETS varies widely
and is difficult to assess quantitatively aside
from cotinine samples or from data collected
on personal monitors. Current epidemiologic
data on lung cancer and ETS exposure at work
are largely from studies that have included
questions about exposure to ETS at work in
addition to that at home. A recent review and
meta-analysis by Wells (2) found 14 studies
that contained potentially useful data on lung
cancer and exposure to ETS at work. The five
studies that satisfy his selection criteria indicate
a combined excess risk of 39% (95% CI = 15,
68), slightly above the 30% (95% CI = 9, 55)
from the same five studies for women exposed
to spousal smoking. At least five other meta-
analyses have found no increased risk from
occupational exposure, a discrepancy for which
Wells offers an explanation. The estimates in
Wells (2) and the current approach are reason-
ably close, considering the differences in data
and methods.

The current approach indirectly brings
data on spousal smoking to bear on the prob-
lem of estimating lung cancer risk from ETS
in the workplace. There are several weak-
nesses, however, that should be clearly identi-
fied. It is assumed that the RR from spousal
smoking is reasonably well described by
Equation 1, i.e., that the expected value of
ln(RR) is proportional to the number of ciga-
rettes/day smoked by the spouse. Although
this model seems to provide an adequate
description of the exposure-response data, it is
still an approximation. There might be other
models that fit the data as well or better.
Study characteristics not examined might also
have some influence, e.g., study design
(case-control/cohort) or year of publication.

Environmental Health Perspectives * Vol 107, Supplement 6 * December 1999888



LUNG CANCER AND ETS

Changes in smoking habits in recent years
may reduce the reliability of current spousal
smoking as an indicator of past ETS exposure.
People are now more aware of the potential
hazards of passive smoking and may smoke
less or be more likely to smoke outdoors.

RR undoubtedly depends on duration as
well as intensity of exposure to tobacco
smoke, but no data are available where expo-
sure jointly includes both intensity and
duration. The measures of occupational
exposure to ETS, such as urinary or serum
cotinine and personal monitoring of nico-
tine, necessary to the current approach per-
tain only to exposure intensity. An implicit
assumption is that the durations of ETS
exposures from spousal exposure and from
the workplace are comparable.

For practical purposes, nicotine from
tobacco smoke is the only source of cotinine
in body fluids. Although not ideal, cotinine is
a widely accepted biomarker of recent ETS
exposure in nonsmokers. But it is also impor-
tant to recognize that nicotine and cotinine
are only proxy markers for the active agents in
ETS that elicit lung cancer. As described pre-
viously, the excess risk attributable to non-
smoking women (married or not) at the
average serum cotinine level for those exposed
to ETS at home is assumed to equal the excess
risk from spousal smoking at the average adult
male smokers' rate of about 24 cigarettes/day.

Dietary differences between nonsmokers
exposed to ETS and those unexposed are pos-
sible confounders that have not been taken
into account (1,3). The possibility arises from
evidence that diets low in fruits and vegeta-
bles are associated with a higher risk of lung
cancer and studies showing that smokers eat
less of those foods than nonsmokers. A
dietary effect would be difficult to assess,
however, and even more difficult to quantify
with any degree of confidence. The U.S. EPA
report (1) concludes that "the actual data of
ETS studies do not support the suspicion that
diet introduces a systematic bias in the ETS
results". Similarly, an investigation of eight
epidemiologic studies that directly recorded
data on diet "confirmed the negligible effect
of dietary confounding" (3). Although it
seems unlikely that diet is a confounder, at
least of consequence, dietary self-assessments
are notoriously inaccurate and this issue can-
not be completely laid to rest.

Publication bias that results because
positive studies, i.e., those finding a signifi-
cant effect, are more apt to be published than
negative studies cannot be entirely dismissed.
There are reasons, however, why such bias
seems unlikely. Potential for detrimental
health effects from ETS has been of wide-
spread interest in the last 10-20 years, and
numerous negative studies have appeared in
the literature. It appears unlikely that a

manuscript on ETS would not be submitted
for publication or be editorially refused sim-
ply because it did not find a significant health
effect. Epidemiologic studies are typically
costly and time consuming, and investigators
have an interest in getting the outcome pub-
lished. With methods of meta-analysis com-
monly applied to combine results across
studies, it is realized that even a small study
with little power to detect an effect by itself
contributes to the total pool of evidence.

Conclusions
The current approach brings additional
evidence to bear on assessing the risk of lung
cancer from occupational exposure to ETS
and leads to the conclusions below. Further
study is needed to validate the assumptions
and methods on which they are based. That
notwithstanding, however, the current
approach provides additional evidence of an
increased risk of lung cancer in nonsmokers
occupationally exposed to ETS. Tobacco
smoke has been linked with heart disease as
well as lung cancer and other maladies.
Federal and numerous state agencies have
restricted smoking in the workplace as a pro-
tective measure for employees. The large
number of nonsmokers in the U.S. work
force and the imperative to assure their occu-
pational safety and health underscore the
importance of further assessment and charac-
terization of risks from ETS in the workplace.
* The application of data from studies of

lung cancer and U.S. nonsmoking women
married to smokers, in conjunction with
data on serum cotinine levels and personal
monitoring of nicotine, affirms an
increased risk of lung cancer to nonsmok-
ers from occupational exposure to ETS.

* The predicted increase in lung cancer risk
for a nonsmoking woman exposed to ETS
at work is 25% (95% CI = 8, 41) relative
to the risk from background (non-ETS)
sources. The excess risk predicted at the
95th percentile of occupational exposure
is 91% (95% CI = 34, 107).

* The excess risk from ETS at work appears
to be less (by perhaps one-third) than that
from spousal smoking at typical exposure
levels. At the high end of exposures, how-
ever, the excess risks appear to be compara-
ble or higher than that from ETS at work.

Appendix A
Serum Cotinine
Pirkle et al. (25) analyzed data from
NHANES III (18), a nationally representa-
tive cross-sectional survey that included meas-
urements of serum cotinine, a metabolite of
nicotine, on a large number of people. From
Pirkle et al., Table 4 (25), the geometric
mean cotinine levels (nanograms per milli-

liter), by source of reported ETS exposure,
were as follows for working men and women
at least 17 years of age: at both home and
work (0.926), at home only (0.651), at work
only (0.318), at neither home nor work
(0.132). It is assumed that any gender differ-
ences in the mean values are negligible, so
that these values are similar to what would be
obtained for women only. For our purpose,
estimates are needed of average serum coti-
nine levels in women with ETS exposure a) at
home, b) not at home, c) at work, and d) not
at work. From the data in Table 2 of Pirkle
et al. (25) for women reporting no tobacco
use and between the ages of 20 and 59, the
following percentages are easily determined
for sources of ETS exposure: at both home
and work (6.46), at home only (14.45), at
work only (19.75), and at neither home nor
work (59.34). These percentages were used to
obtain weighted-average cotinine levels for
women exposed to ETS in locations a-d
above. For example, for ETS exposure a) at
home (6.46 x 0.926 + 14.45 x 0.651)1(6.46
+ 14.45) = 0.7360. Similarly, the weighted
means for the remaining categories are b) not
at home, 0.1784; c) at work, 0.4679; and d)
not at work, 0.2336.

Adjusting Relative Risk for the
Exposure to the Referent Group
The referent group for the RR of non-
smoking women married to smokers is non-
smoking women married to nonsmokers.
However, that referent group has some expo-
sure to ETS, and hence some excess risk of
lung cancer from it relative to the risk from
non-ETS sources (referred to as background
sources). To convert RR to be relative to
background risk, RR is simply multiplied by
the risk of the referent group relative to that
of the background risk. The method
described more fully in Hackshaw et al. (3) is
implemented to calculate that multiple.

Let 1 + X denote the multiple, where Xis
the excess risk of the referent group relative to
background risk. Then

RR= (1 + ZX)/(1 + X), [3]

where ZX is the excess risk of women with
husbands who smoke relative to background
risk, and Z > RR > 1. The solution for 1 + X
for known Zand RR is

1 + X= (Z-1)/(Z- RR). [4]

Using urinary cotinine as an index of
uptake of ETS, the cotinine levels in women
exposed to spousal smoking are about three
times those without spousal exposure. Then
assuming that the excess risk (relative to back-
ground) is approximately linear to uptake of
ETS for this calculation, the value of Z in
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Equation 3 is about three. To be consistent
with the way Z was constructed, the value of
RR at Z = 3 should be the risk ofwomen mar-
ried to smokers relative to that of women not
married to smokers. As noted in the section of
results, estimates of RR in the United States
have varied from about 1.10 to 1.30. Over
that range for RR, the solution to X in
Equation 3 ranges from 0.05 to 0.18. The
value of X corresponding to RR = 1.20, X=
0.1 1, is used in the current analysis. The cor-
responding multiple to adjust for ETS expo-
sure of the referent group is then 1 + X= 1.1 1.

REFERENCES AND NOTES

1. U.S. EPA. Respiratory Health Effects of Passive Smoking: Lung
Cancer and other Disorders. EPA/600/6-90/006F. Washington,
DC:U.S. Environmental Protection Agency, 1992.

2. Wells AJ. Lung cancer from passive smoking at work. Am J
Public Health 88(7):1025-1029 (1998).

3. Hackshaw AK, Law MR, Wald NJ. The accumulated evidence
on lung cancer and environmental tobacco smoke. Br Med J
315:980-988 (1997).

4. Wang T-J, Zhou B-S, Shi J-P. Lung cancer in nonsmoking
Chinese women: a case-control study. International symposium
on lifestyle factors and human lung cancer, China, 1994. Lung
Cancer 14:S93-98 (1996).

5. Liu 0, Sasco AJ, Riboli E, Hu MX. Indoor air pollution and lung
cancer in Guangzhou, People's Republic of China. Am J
Epidemiol 137:145-54 (1993).

6. Geng G, Liang ZH, Zhang GL. On the relationship between
smoking and female lung cancer. In: Smoking and Health.
Amsterdam:Elsevier Science Publishers, 1988:483-486.

7. Inoue R, Hirayama T. Passive smoking and lung cancer in women.
In: Smoking and Health. Amsterdam:Elsevier, 1988;283-285.

8. Berlin JA, Longnecker MP, Greenland S. Meta-analysis of epi-
demiological, dose-response data. Epidemiology 4(3):218-228
(1993).

9. Greenland S, Longnecker P. Methods for trend estimation from
summarized dose-response data, with applications to meta-
analysis. Am J Epidemiol 135(11):1301-1309 (1992).

10. Cardenas VM, Thun ML, Austin H, Lally CA, Clark WS,
Greenberg RS, Heath CW Jr.Environmental tobacco smoke and
lung cancer mortality in the American Cancer Society's Cancer
Prevention Study II. Cancer Causes Control 8:57-64 (1997).

11. Garfinkel L, Auerbach 0, Joubert L. Involuntary smoking and
lung cancer: a case-control study. J NatI Cancer Inst
75:463-469 (1985).

12. Kabat GC, Stellman SD, Wynder EL. Relation between exposure
to environmental tobacco smoke and lung cancer in lifetime
nonsmokers. Am J Epidemiol 142:141-148 (1995).

13. Humble CG, Samet JM, Pathak DR. Marriage to a smoker and
lung cancer risk. Am J Public Health 77:598-602 (1987).

14. Garfinkel L. Time trends in lung cancer mortality among non-
smokers and a note on passive smoking. J Natl Cancer Inst
6:1061-1066 (1981).

15. Kalandidi A, Katsouyanni K, Voropoulou N, Bastas G, Saracci
R, Trichopoulis D. Passive smoking and diet in the etiology of
lung cancer among nonsmokers. Cancer Causes Control
1:15-21 (1990).

16. Trichopoulos D, Kalandidi A, Sparros L. Lung cancer and passive
smoking: conclusion of Greek study [Letter]. Lancet ii:667-668
(1983).

17. NRC. Environmental Tobacco Smoke: Measuring Exposures and
Assessing Health Effects. Washington, DC:National Academy
Press, 1986.

18. Ezzati TM, Massey JT, Waksberg J, Chu A, Maurer KR. Sample
design: Third National Health and Nutrition Survey. Vital Health
Stat 2. 113:1-35 (1992).

19. Hole DJ, Gillis CR, Chopra C, Hawthorne VM. Passive smoking
and cardiorespiratory health in a general population in the west
of Scotland. Br Med J 299:423-427 (1989).

20. Pershagen G, Hrubec Z, Svensson C. Passive smoking and lung
cancer in Swedish women. Am J Epidemiol 125(1):17-24 (1987).

21. Garfinkel L. Selection, follow-up, and analysis in the American
Cancer Society prospective studies. Natl Cancer Inst

Monographs 67: 49-52 (1985).
22. Stellman SD, Garfinkel L. Smoking habits and tar levels in a

new American Cancer Society prospective study of 1.2 million
men and women. J NatI Cancer Inst 76:1057-1063 (1986).

23. NIH. Changes in Cigarette-Related Disease Risks and Their
Implication for Prevention and Control. Monograph 8. NIH Publ
no 97-4213. Bethesda, MD:National Institutes of Health, 1997.

24. Brown K. Epidemiologic studies on the association between
environmental tobacco smoke and disease: lung cancer and
heart disease. Unpublished report submitted to U.S.
Department of Labor, Office of Safety and Health
Administration, Durham, NC:Kenneth G. Brown, Inc., 1995.

25. Pirkle JL, Flegal KM, Bernert IT, Brody DJ, Etzel RA, Maurer KR.
Exposure of the U.S. population to environmental tobacco
smoke. JAMA 275(16):1233-1240 (1996).

26. Jenkins RA, Palausky A, Counts RW, Bayne CK, Dindal AB,
Guerin MR. Exposure to environmental tobacco smoke in six-
teen cities in the United States as determined by personal
breathing zone air sampling. J Expos Anal Environ Epidemiol
6(4):473-502 (1996).

27. U.S. DHHS. The health consequences of involuntary smoking. A
report of the Surgeon General. DHHS Publ no (PHS) 87-8398.
Washington, DC:U.S. Department of Health and Human
Services, Public Health Service, Office of the Assistant
Secretary for Health, Office of Smoking and Health, 1986.

28. Du YX, Cha Q, Chen YZ, Wu JM. Exposure to environmental
tobacco smoke and female lung cancer in Guangzhou, China.
Proc Indoor Air 1.:511-516 (1993).

29. Koo LC, Ho JH Saw D, Ho CY. Measurements of passive smok-
ing and estimates of lung cancer risk among nonsmoking
Chinese females. Int J Cancer 39:162-169 (1987).

30. Lam TH, Kung ITM, Wong CM, Lam WK, Kleevens JWL, Saw D,
Hsu C, Seneviratne S, Lam SY, Lo KK, et al. Smoking, passive
smoking, and histological types in lung cancer in Hong Kong
Chinese women. Br J Cancer 6:673-678 (1987).

31. Akiba S, Kato H, Blot WJ. Passive smoking and lung cancer
among Japanese women. Cancer Res 46:4804-4807 (1986).

32. Hirayama T. Cancer mortality in nonsmoking women with smok-
ing husbands based on a large-scale cohort study in Japan.
Prev Med 13:680-690 (1984).

33. Trichopoulos D. Personal communication (1984).

890 Environmental Health Perspectives * Vol 107, Supplement 6 * December 1999


